
Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 1

User’s Guide

Table of Contents
1. Introduction. ... 2

1.1 Scope ... 2

1.2 Normative references ... 2

1.3 SDK composition ... 2

1.4 Features Description ... 3

1.5 Program session .. 4

2. The Basic Interface Structures .. 4

2.1 Decoder options .. 4

2.2 Image info ... 5

2.3 Symbol info ... 5

2.4 The Constants .. 6

2.5 Type definitions .. 8

3. The Interface Procedures and Functions .. 8

3.1 Connect_DM_Decoder ... 8

3.2 Disconnect_DM_Decoder ... 9

3.3 Create_DM_Options ... 9

3.4 Delete_ DM_Options .. 9

3.5 DecodeDM_Bits ... 9

4. GS1 Compliance .. 11

5. Applying Pre-processing Filter .. 12

6. Licensing / Evaluation ... 13

6.1 Licensing from TwoDtgLicense app ... 13

6.1.1 Executing TwoDtgLicense.. 13

6.1.2 Online Activation ... 13

6.1.3 Manual Activation ... 14

6.2 Licensing from User’s Application ... 14

6.2.1 Licensing system initialization. .. 14

6.2.2 On-line library activation on 2DTG website. ... 15

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 2

6.2.3 Manual activation (no access to the Internet from your PC). ... 15

1. Introduction.

1.1 Scope

This document is applicable to the Professional, DPM and Enterprise editions of the Data

Matrix Decoding SDK.

Library interface for all three editions is uniform for Windows (XP…10), Linux, and certain

embedded platforms. Both static and dynamic libraries are available.

The library is designed to decode Data Matrices ECC200 in accordance with ISO/IEC 16022

Symbology specification. Symbol quality assessment is provided in accordance with ISO/IEC

15415 standard.

Library processes 8-bit images only.

1.2 Normative references

ISO/IEC 16022 - Symbology specification - Data Matrix

ISO/IEC 15415 - Symbol quality - Bar code print quality test specification — Two-

dimensional symbols

ISO/IEC TR 29158-2011 Direct Part Mark (DPM) Quality Guideline

AIM DPM Quality Guideline

1.3 SDK composition

Following files are supplied within SDK:

libDMatrix.so - library with decoding functions for application development

 Source codes for demo program that applies the library:

 DMPro_Types.h - header file that describes interface of library

 Demo_Opn.cpp - source code of sample application that uses our library

 LoadBMP.c, LoadBMP.h - the functions for loading "BMP" files

Executable files:

demo_so.out - demo program (application) that was built from Demo_Opn.cpp

 source code.

 TwoDtgLicense - GUI application for license activation and deactivation management.

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 3

SDK description:

 readme.txt

 DM_EP_User_Guide.pdf - this file.

1.4 Features Description

Edition specific features of the Library are described in the Table below:

Data Matrix SDK

Features
EDITION

Description Profes

sional
DPM

Enter

prise

Data Matrix

Quality

Parameters

√ √ √
Quality Parameters assesment in accordance

with ISO 15415

Dot Peen Data

Matrix decoding

(DPM)

 √ √
provides DPM (including Dot Peen) decoding in

accordance with AIM DPM Quality Guideline

Preprocessing

Filters
 √ √

provides for two types of filters:

• Sharpening Filters, recommended for low

contrast and blurred images, including

Adaptive (Auto) Filter and Musk Filter, and

Sharp1, Sharp2 iterative filters;

• BWR Filter, compensating for size

irregularities in DataMatrix cells

Decode / Speed

Selector
√ √

Provides for three speed/robustness options:

• Regular Mode – for most (including DPM)

images - combines high success decode rate

with high speed;

• Ultimate – for the particularly challenging

images (increases success decode rate by ~

7%, but decode time may also increase by);

• Express Mode - higher decoding speed

(~15% faster than Regular mode, but

success decode rate might be ~15% lower) -

for the applications where decoding time is

critical and image quality is reasonably good

Multiple

DataMatrix

decoding

√ √
decodes up to 400 barcodes within one image via

variable settings

Allowable image

size (pixels)

1200 x

1600
640 x

844

5000 x

8192

Quiet Zone √ allows for reduced Quiet Zone of Data Matrix

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 4

Inverse Color

DataMatrix

decoding

√ √ √
allows to speed up symbol decoding when its

color can be defined in advance

Mirror

DataMatrix

decoding

√ √ √
provides for decoding of a “mirrored” Data Matrix

symbol

FAX

transmitted

DataMatrix

decoding

 √ √
decodes Data Matrix symbols located within a

FAX-transmitted or Tiff images

1.5 Program session

Typical program session looks as follows:

Step 1. Connect decoder

Step 2. Create and set decoder options

Loop

 Step 3. Capture/read bitmap image

 Step 4. Process image

 Step 5. Request image and symbols info

 … // further application-specific data processing and interaction with user

End Loop

Step 6. Delete decoder options

Step 7. Disconnect decoder.

2. The Basic Interface Structures

The library includes the following structures:

struct TDM_OptMode - the set of decoder options,

struct TDM_ImageInfo - features of decoded image,

struct TDM_Info - features of decoded symbols,

struct TDM_Quality - Quality Parameters of decoded symbols.

2.1 Decoder options

/// decoder option modes

struct TDM_OptMode

{

 int maxDMCount; //!< from 1 to 100. 1 by default

 int cellColor; //!< CL_ANY by default

 int mirrorMode; //!< MM_NORMAL by default

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 5

 int speedMode; //!< SP_ROBUST by default

 int qualityMask; //!< DM_QM_NO by default

 int labelMode; //!< LM_NORMAL by default

 int timeOut; //!< timeOut in mls. Timeout <= 0 means infinite timeout

 int filterMode; //!< FM_NON by default

 int qzMode;

};

2.2 Image info

/// results of decoding the whole Image

struct TDM_ImageInfo

{

 int DMCount; //!< number of well decoded symbols within image

 int RejectionReason;//!< not DM_RR_OK if no one matrix has been well

decoded

 int BreakReason; //!< 0 - normal termination, 1 - termination by time-

out

 };

ImageInfo.DMCount = 1 if any Rectangle-shaped object was detected in image.

It happens if

RejectionReason = DM_RR_OK,

RejectionReason = DM_RR_BYCRIT,

RejectionReason = DM_RR_REEDSOLOMON.

If DMCount = 1 the rectangle Corners and some of Quality Parameters are defined.

BreakReason let us know whether the time out or user break happened (for embedded platforms

only).

2.3 Symbol info

Each decoded symbol is described by the following structures:

/// Data Matrix Quality Parameters

struct TDM_Quality

{

 float symbol_contrast;

 float axial_nonuniformity;

 float grid_nonuniformity;

 float fixed_pattern_damage; //!< the aggregate grade

 float unused_error_correction;

 float vertical_print_growth;

 float horizontal_print_growth;

 float symbol_contrast_grade;

 float axial_nonuniformity_grade;

 float grid_nonuniformity_grade;

 float fixed_pattern_damage_grade;

 float unused_error_correction_grade;

 float modulation_grade;

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 6

 float decode_grade; //!< 4 if DM was successfully decoded

 float overall_grade; //!< minimum of grades

};

/// result of decoding of each Data Matrix symbol in image

struct TDM_Info

{

 float rowcols[8]; //!< symbol corner coordinates

 int pchlen; //!< length of decoded byte array

 unsigned char* pch; //!< pointer to that array

 int RSErr; //!< number of Reed Solomon errors

 int VDim, HDim; //!< vertical and horizontal dimensions of Data

Matrix

 int saTotalSymbolsNumber //!< structured append: total number of

matrices

 //!< value 0xff indicates ReaderProgramming - a special case

 ,saSymbolPosition //!< current matrix index

 ,saFileID1 //!< file identifier 1

 ,saFileID2; //!< file identifier 2

 int mirrored; //!< true if mirrored Data Matrix

 int dotpeenstage; //!< true if dot peened Data Matrix

 int matrixcolor; //!< detected color of Data Matrix

 TDM_Quality quality; //!< symbol Quality Parameters

};

2.4 The Constants

enum CELL_COLOR{

 CL_BLACKONWHITE = 1,

 CL_WHITEONBLACK = 2,

 CL_ANY = 3

};

enum MIRROR_MODE{

 MM_NORMAL = 1,

 MM_MIRROR = 2,

 MM_ANY = 3

};

enum DECODER_SPEED{

 SP_ROBUST = 0,

 SP_FAST = 1,

 SP_GRID_ADJUSTMENT = 2,

 SP_EQUALIZATION = 3, //!< re-equalizing the regions of probable Data Matrix

 SP_EQUAL_GRADJ = 4

,SP_ACCURATE = 5

};

/// the aliases:

enum DM_SPEED{

 DMSP_ULTIMATE = SP_ACCURATE, //!< most accurate but time-consuming

 DMSP_REGULAR = SP_EQUAL_GRADJ, //!< recommended ratio "speed/quality"

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 7

 DMSP_EXPRESS = SP_ROBUST //!< basic algorithm (faster than

regular)

};

enum LABEL_MODE{

 LM_STANDARD = 0, //!<-ISO 16022

 LM_DOTPEEN = 1,

 LM_FAX = 2,

 LM_ST_DOT = 3 //!< Combines Standard & Dotpeen

};

/// \enum QUALITY_MASK bits of mask:

enum QUALITY_MASK{

 DM_QM_NO = 0X0000,

 DM_QM_AXNU = 0X0001,

 DM_QM_PRGR = 0X0002,

 DM_QM_SYMCTR = 0X0004,

 DM_QM_CELLINFO = 0X0008,

 DM_QM_ALL = 0x7FFF

};

enum FILTER_MODE{

 FM_NON = 0, //!< No filter

 FM_SHARP1 = 1, //!< First Filter Mode (recursive sharpening)

 FM_SHARP2 = 2, //!< Second Filter Mode (recursive sharpening)

 FM_SHARPMASK = 3, //!< Sharpening Mask Filter

 FM_AUTO = 4 //!< Auto selection of sharpening parameters

,FM_BWR = 5 //!< Bar Width Reduction (spaces enlargement)

,FM_SM_BWR = 6 //!< Sharpening Mask + Bar Width Reduction

};

enum QRQZ_MODE{

 DMQZ_NORMAL = 0 //!< allows QZ>= 5.7 pixels

,DMQZ_SMALL = 1 //!< allows QZ>= 4.5 pixels, affects speed and robustness

};

enum DM_REJECTION_REASON{

 DM_RR_OK = 0,

 DM_RR_NON = 1,

 DM_RR_NODATAMATRIX = 2,

 DM_RR_BYCRIT = 3,

 DM_RR_REEDSOLOMON = 5,

 DM_RR_NOMEMORY = 99,

 DM_RR_UNKNOWN = 100,

 DM_RR_DISCONNECTED = 200

};

enum DM_BREAK_REASON{ //!< invalid anyware except of TI platform

//----------------------

 DM_ALL_INSPECTED = 0 //!< no breaks occurred

,DM_TIMEOUT = 1 //!< termination by time out

,DM_TERMINATED = 2 //!< termination by user break

};

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 8

2.5 Type definitions

typedef void* PDM_Decoder; //!< handler of Data Matrix Decoder

typedef void* PDM_Options; //!< handler of Decoder Options

typedef TDM_ImageInfo* PDM_ImageInfo; //!< pointer to Image Info

typedef TDM_Quality* PDM_Quality; //!< pointer to symbol Quality

typedef TDM_Info* PDM_Info; //!< pointer to symbol Info

typedef unsigned char* TRow; //!< pointer to bitmap line

/// The function creates Data Matrix Decoder and returns Decoder handler

typedef PDM_Decoder (stdcall *TConnect_DM_Decoder)(int maxrow, int maxcol);

/// The function destroys Data Matrix Decoder

typedef void (stdcall *TDisconnect_DM_Decoder)(PDM_Decoder &pDecoder);

/// The function creates Decoder Options and returns Options handler

typedef PDM_Options (stdcall *TCreate_DM_Options)(PDM_Decoder pDecoder,

TDM_OptMode optmode);

/// The function destroys Decoder Options

typedef void (stdcall *TDelete_DM_Options)(PDM_Options &pOptions);

/// The function decodes array ppbits with given Options

typedef int (stdcall *TdecodeDM_Bits)(PDM_Options pOptions, int rowcount, int

colcount, TRow* ppbits);

/// The function returnes the ImageInfo of last decoded Image

typedef PDM_ImageInfo (stdcall *TGetDM_ImageInfo)(PDM_Options pOptions);

/// The function returnes the DM_Info(dmNum)

typedef PDM_Info (stdcall *TGetDM_Info)(PDM_Options pOptions, int

dmNum);

3. The Interface Procedures and Functions

Description of the interface procedures is below.

3.1 Connect_DM_Decoder

PDM_Decoder Connect_DM_Decoder (int maxrowcount, int maxcolcount);

Description.

Function generates new instance of class encapsulating the decoder functionality.

Parameters.

Maximum of horizontal and vertical image sizes.

Return value.

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 9

Pointer to decoder in success, or NULL otherwise.

3.2 Disconnect_DM_Decoder

void Disconnect_DM_Decoder(PDM_Decoder & pDecoder);

Description.

Procedure destroys decoder class and frees memory.

Parameter.

Pointer to decoder. Decoder should be connected.

3.3 Create_DM_Options

Class TDM_Options encapsulates the decoder options and methods of image processing and

inspection.

PDM_Options Create_DM_Options (PDM_Decoder pDecoder,TDM_OptMode

optmode);

Description.

Function generates new class to decode image with certain options.

Parameters.

- Pointer to decoder.

- Pointer to option modes that specify the way of image processing

Return value.

The handler that provides decoding of the image with desirable options.

3.4 Delete_ DM_Options

void Delete_DM_Options (PDM_Options & pOptions);

Description.

The function destroys a handler.

Parameters.

- Handler of decoder with options.

3.5 DecodeDM_Bits

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 10

int DecodeDM_Bits (PDM_Options pOptions,

 int actualrowcount,

 int actualcolcount,

 TRow* prows);

Description.

The function processes an image and fills Image Info and array of Symbol Infos.

Parameters.

- Handler produced by 3.3

- Number of image rows

- Number of image columns

- Array of pointers to image rows. Every row is a byte array with 8-bit pixel intensities.

(We have typedef unsigned char* TRow;)

Return value.

0 if no one symbol was decoded, >0 otherwise.

If the only symbol was decoded then Rejection Reason may be not DM_RR_OK.

GetDM_ImageInfo

PDM_ImageInfo GetDM_ImageInfo (PDM_Options pOptions);

Description.

The function returns image info.

Return value.

Pointer to Image Info.

GetDM_Info

PDM_Info GetDM_Info (PDM_Options pOptions, int dmNum);

Description.

The function returns Data Matrix symbol info.

Parameters.

- Handler of decoder with options

- Number (index) of decoded symbol in image.

If no symbols were decoded we return Info about the most probable symbol location.

Return value.

Pointer to Symbol Info.

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 11

4. GS1 Compliance

GS1 DataMatrix uses a special start combination to differentiate the GS1 DataMatrix symbol

from the other Data Matrix ECC 200 symbols. This is achieved by using the Function 1 Symbol

Character (FNC1) in the first position of the data encoded. It enables scanners to process the

information according to the GS1 System Rules.

The FNC1 (ASCII 232) is encoded in two separate ways within GS1 DataMatrix:

• Start character

• Field Separator (to seperate varible length article identifiers)

In accordance with ISO/IEC 15424 - Data Carrier Identifiers (including Symbology Identifiers),

the Symbology Identifier (the first three characters transmitted by the scanner indicating

symbology type)]d2 specifies that the symbol read is a GS1 DataMatrix symbol while]d1, for

example, specifies regular ECC 200 symbol.

2DTG’s decoding library returns Symbology Identifier that can be used by GS1 users when

building their applications.

In our example of Library usage in Windows OS (DEMO Application) – Section 3.6 of this

User’s Guide - Symbol Info is represented in variable “PDM_Info pdminfo”.

Decoding GS1 Data Matrix (on the right) returns the result, as follows:

pdminfo->pch =

"01034531200000111712050810ABCD1234\x1D4109501101020917";

The Symbology Identifier is stored in preamble of pch with negative indexes [-3..-0].

You can extract a value of Symbology Identifier by following operators:

char Symbology_Identifier[4];

strncpy(Symbology_Identifier,(char*)&(pdm_info->pch[-3]),3);

Symbology_Identifier[3] = 0;

In other words in case of GS1 Data Matrix in decoded pch (from index -3) we receive:

-3..0..

“]d201034531200000111712050810ABCD1234\x1D4109501101020917"

while the input string was (Second FNC1 here is used like fields separator):

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 12

FNC101034531200000111712050810ABCD1234FNC14109501101020917

5. Applying Pre-processing Filter

Data Matrix decoding library, Enterprise edition comes with of optional pre-processing filters:

• Sharpening filters - Adaptive (Auto) Filter and Musk Filters (Sharp1,

Sharp 2 and SharpMask) recommended for low contrast and blurred

images (Sample of the image that may require sharpening is shown here

(decodable only after applying SharpMask Filter)), and

• “Print Correction Filter” or “BWR filter” - designed to compensate for

the printing conditions (“overprinting”) of some Data Matrix barcodes,

having substantial irregularities in the printed module size and/or Grid

Non-Uniformity (GNU).

ISO standard specifies required dimensions and tolerances in the final printed Data

Matrix symbol. In real life, however, after the code is printed the dark cells may end up

greater than the light ones due to a number of factors, but, most probably, due to the

excessive ink spread in dark regions. If this “spreading” is too big (beyond the ISO

standard), datamatrix decoding software may not be capable of “reading” the bar code

(this image at right illustrates also the additional “printing” problem – the irregularities in

the alternating pattern or even its “warping”).

Similarly, the wear of the printing machine may result in displacement of the actual grid

nodes towards their nominal positions in each cell of Data Matrix, causing it to become

“unreadable”.

Using “BWR Filter” allows to decode such codes, which are, otherwise, “not readable”.

• Combined Filter – “SM + BWR” – designed to compensate both for

the overprinting and fuzziness of some Data Matrix barcodes. Shall be

used on barcodes with large values of “Print Growths" and having

module size larger or about 5х5 pixels.

All filters are supposed to be applied to the captured image before decoding procedure if the

corresponding option is chosen in the initial settings.

Important:

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 13

The caution shall be taken when applying the filters. If it is applied to the “regular” (reasonable
quality) image it can, actually, make it undecodable. Only Adaptive (Auto) filter can be safely
applied to any image – they do not degrade the symbol. That is why it is recommended always
try the regular decoder first and apply filter only if it fails.

6. Licensing / Evaluation

Stand-alone license is locked to the computer, on which it was activated. License can be

activated at any time during 30-days trial/evaluation period.

Trial license is fully functional but limited to 30 days after the first use of library.

Licensing can be done either from the customer’s app or by executing TwoDtgLicense app,

provided by 2DTG as part of the SDK package.

License may be transferred to another computer after it’s deactivated from the first one.

Deactivation can be done in “on-line mode” only, so internet connection is required.

6.1 Licensing from TwoDtgLicense app

6.1.1 Executing TwoDtgLicense

libqt5widgets.so.5 is required for the licensing application to function. It has been reported that

some versions of Linux do not have this application installed. If you receive an error reporting no

such file found you just need to install the missing item using the following command:

sudo apt-get install libqt5widgets5

6.1.2 Online Activation

Once starting the GUI you will have a couple of activation options, either Online or Manually.

Select the “Activate Online” button and you will then be prompted to enter your

License ID and Password:

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 14

6.1.3 Manual Activation

If you are working on a device that does not have internet access you also have the option for

activating your license manually. Simply select the “Activate Manually” button and you will

then be prompted with the manual activation window below.

You will first need to enter your License ID and Password and click the Generate User Codes

button. Once selected you will see User Code 1 and User Code 2 which you will need to provide

to any 2DTG representative via telephone* or email** and they will provide you with the

required Activation Code 1 and Activation Code 2. Once entered just click the Active button and

that’s it!

6.2 Licensing from User’s Application

The description of how to activate (begin trial period) of the library from your application can be

found in twodtg_license.h.

Data Matrix Decoding SDK (for Linux)

2D Technology Group, Inc. Rev. 22/02 15

6.2.1 Licensing system initialization.

Licensing system must be initialized before the first use of the Decoding library.

Call 'EvaluationDayCount' function from your application to start 30-days trial period. This call

requires root access. All subsequent calls of the decoding library do not require administrative

privileges.

To check out if administrative privileges are required you can call 'RequredRootAcess' function.

6.2.2 On-line library activation on 2DTG website.

Call 'ActivationOnline' function from your application and pass ‘License ID’ and ‘License

password’ received during the purchase.

6.2.3 Manual activation (no access to the Internet from your PC).

A. Call 'GetUserCodes' function – it will generate userCode1 и userCode2 - OUTPUT

parameters from your PC, required for Trigger Code dialog on 2DTG website.

(If this function returns ‘0’ for one or both parameters, please, contact 2DTG technical

support).

B. Log-in to your account on 2DTG website from a PC having access to the Internet, open

your Order page and then ‘Manual Unlock License’ page:

Enter required data and click ‘Unlock” – the system will return to you ‘ActivationCode1’

and ‘ActivationCode2’.

C. Call 'ActivationManual' function from your application and pass received

‘ActivationCode1’ and ‘ActivationCode2’.

